
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.
Clear["Global`*⋆"]

Since Mathematica documentation has a section that seems tailormade, I might as well start 
off with that:

Study the vibrations of a stretched string using the wave equation.
weqn = D[u[x, t], {t, 2}] ⩵ D[u[x, t], {x, 2}]

u(0,2)[x, t] ⩵ u(2,0)[x, t]

Specify that the ends of the string remain fixed during the vibrations.
bc = {u[0, t] ⩵ 0, u[π, t] ⩵ 0};

Give initial values at different points on the string.

ic = u[x, 0] == x^2 (π -− x), u(0,1)[x, 0] == 0;

Solve the initial-boundary value problem. Note: in the boundary conditions this example 
sets the length of the string at π units, and the string length reappears in the initial condi-
tions equation (x^2(π-x)). This format seemed essential in getting Mathematica to solve 
the diff eq. But it worked as desired after some experimentation.
dsol = DSolve[{weqn, bc, ic}, u, {x, t}] /∕. {K[1] → m}

u → Function{x, t}, 
m=1

∞

-−
4 (1 + 2 (-−1)m) Cos[t m] Sin[x m]

m3


Extract four terms from the inactive sum.
asol[x_, t_] = u[x, t] /∕. dsol[[1]] /∕. {∞ → 4} /∕/∕ Activate

4 Cos[t] Sin[x] -−
3

2
Cos[2 t] Sin[2 x] +

4

27
Cos[3 t] Sin[3 x] -−

3

16
Cos[4 t] Sin[4 x]

Each term in the sum represents a standing wave.



Table[Show[Plot[
Table[asol[x, t][[m]], {t, 0, 4}] /∕/∕ Evaluate, {x, 0, Pi}, Ticks → False,
PlotStyle → {Thickness[0.004]}, ImageSize → 150]], {m, 4}]

 , ,

, 

5 - 13 Deflection of the String
Find u(x,t) for the string of length L=1 and c2 = 1 when the initial velocity is zero and 
the initial deflection with small k (say, 0.01) is as follows. Sketch or graph u(x,t) as in 
Fig. 291 in the text.

5. k sin 3πx

Clear["Global`*⋆"]

weqn = D[u[x, t], {t, 2}] ⩵ D[u[x, t], {x, 2}]

u(0,2)[x, t] ⩵ u(2,0)[x, t]

bc = {u[0, t] ⩵ 0, u[1, t] ⩵ 0}

{u[0, t] ⩵ 0, u[1, t] ⩵ 0}

ic = u[x, 0] == ( k Sin[3 π x]) , u(0,1)[x, 0] == 0

u[x, 0] ⩵ k Sin[3 π x], u(0,1)[x, 0] ⩵ 0

dsol = FullSimplify[DSolve[{weqn, bc, ic}, u, {x, t}]]

{{u → Function[{x, t}, k Cos[3 π t] Sin[3 π x]]}}

After some slight tinkering, Mathematica came through with text answer. I think the 
FullSimplify definitely helped.

7. kx(1-x)

Clear["Global`*⋆"]
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weqn = D[u[x, t], {t, 2}] ⩵ D[u[x, t], {x, 2}]

u(0,2)[x, t] ⩵ u(2,0)[x, t]

bc = {u[0, t] ⩵ 0, u[1, t] ⩵ 0}

{u[0, t] ⩵ 0, u[1, t] ⩵ 0}

ic = u[x, 0] == (k x) (1 -− x) , u(0,1)[x, 0] == 0

u[x, 0] ⩵ k (1 -− x) x, u(0,1)[x, 0] ⩵ 0

dsol = FullSimplify[DSolve[{weqn, bc, ic}, u, {x, t}]]

u → Function{x, t}, 
K[1]=1

∞

-−
4 -−1 + (-−1)K[1] k Cos[π t K[1]] Sin[π x K[1]]

π3 K[1]3


dsol2 = Simplify[dsol /∕. K[1] → m]

u → Function{x, t}, 
m=1

∞

-−
4 (-−1 + (-−1)m) k Cos[π t m] Sin[π x m]

π3 m3


The green cell above matches the text’s answer.

9. 
x
5 0 < x < 1 /∕ 2
2

10 -− x
5 1 /∕ 2 < x < 1

rat =
x
5

0 < x < 1 /∕ 2
2
10

-− x
5

1 /∕ 2 < x < 1
;

Plot[rat, {x, 0, 1}, AspectRatio → Automatic]

0.2 0.4 0.6 0.8 1.0
0.02
0.04
0.06
0.08
0.10

I believe the below series of cells is set up correctly; however, in the brown cell below, 
Mathematica declines to calculate the answer. (From hints in StackExchange, I put all 
derivative forms on one side of equals sign in weqn.)
Clear["Global`*⋆"]

weqn = D[u[x, t], {t, 2}] -− D[u[x, t], {x, 2}] ⩵ 0

u(0,2)[x, t] -− u(2,0)[x, t] ⩵ 0

bc = {u[0, t] ⩵ 0, u[el, t] ⩵ 0}

{u[0, t] ⩵ 0, u[el, t] ⩵ 0}

(*⋆ic = u[x, 0] ⩵
 Piecewise x

5
,0<x<1/∕2,{1/∕5-−x/∕5,1/∕2<x<1} ,u(0,1)[x, 0] == 0*⋆)
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ic = u[x, 0] ⩵

 Piecewise
2 k

eL
x, 0 < x < eL /∕ 2, 

2 k

eL
(eL -− x), eL /∕ 2 < x < eL ,

u(0,1)[x, 0] == 0

u[x, 0] ⩵ 

2 k x
eL

0 < x < eL
2

2 k (eL-−x)
eL

eL
2

< x < eL

0 True

, u(0,1)[x, 0] ⩵ 0

dsol = FullSimplify[DSolve[{weqn, bc, ic}, u, {x, t}]]

DSolveu(0,2)[x, t] ⩵ u(2,0)[x, t], {u[0, t] ⩵ 0, u[1, t] ⩵ 0},

u[x, 0] ⩵ 

2 k x
eL

0 < x < eL
2

2 k (eL-−x)
eL

eL
2

< x < eL

0 True

, u(0,1)[x, 0] ⩵ 0, u, {x, t}

So I have to conclude that this approach only works with relatively simple deflection equa-
tions. For a successful alternate approach, see problem 11.

Example 1 on p. 550 gives an exact template of the answer and its necessary expression:

u(x,t)= 8 k
π2

 112 sin πL x cos πcL  t-− 1
32 sin 3 πL x cos 3 πcL  t+ 1

52 sin 5 πL x cos 5 πcL  t-−⋯

, or, in this case,

0.8
π2

(cos πt sin πx - 19 cos 3 πt sin 3 πx + 1
25 cos 5 πt sin 5 πx - ⋯)

11. 

0 0 < x < 1 /∕ 4
x-− 1 /∕ 4 1 /∕ 4 < x < 1 /∕ 2
3 /∕ 4-− x 1 /∕ 2 < x < 3 /∕ 4
0 3 /∕ 4 < x < 1

This problem has a more challenging form. I found a very effective solution procedure at 
http://math.iit.edu/~fass/461_handouts.html
Clear["Global`*⋆"]

Solve the wave equation with the following parameters and initial displacement:

c = 1; L = 1; h = 0.25; f[x_] := Piecewise0, 0 < x <
L

4
,


-−L

4
+ x,

L

4
< x <

L

2
, 

3 L

4
-− x,

L

2
< x <

3 L

4
, 0,

3 L

4
< x < L;
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Plotf[x], x,
-−L

2
,
3 L

2
, AspectRatio → Automatic, PlotRange → Full

-−0.5 0.5 1.0 1.5

0.05
0.10
0.15
0.20
0.25

Compute the Fourier coefficients. Since the initial velocity g(x)=0,  Bn = 0 and
A[n_] = (2 /∕ L) Integrate[f[x] Sin[n Pi x /∕ L], {x, 0, L}]

2 -−Sin n π
4
 + 2 Sin n π

2
 -− Sin 3 n π

4


n2 π2

with eigenvalues

Lambda[n_] =
c n Pi

L
^2

n2 π2

The n-th partial sum of the Fourier series solution of the wave equation is
u[x_, t_, N_] := Sum[A[n] Cos[Sqrt[Lambda[n]] t] Sin[n Pi x /∕ L], {n, 1, N}]

Give the partial sum approximation in a general form. 
u[x, t, 6]

2 2 -− 2  Cos[π t] Sin[π x]

π2
+

2 -−2 -− 2  Cos[3 π t] Sin[3 π x]

9 π2
+
2 2 + 2  Cos[5 π t] Sin[5 π x]

25 π2

The green cell above matches the answer in the text.
Plot[u[x, 0, 20], {x, 0, L}, AspectRatio → Automatic]

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

13. 
2 x-− 4 x2 0 < x < 1

2

0 1
2 < x < 1

Repeating the procedure used in problem 11,
Clear["Global`*⋆"]
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Solve the wave equation with the following parameters and initial displacement:
c = 1; L = 1; h = 0.25;

f[x_] := Piecewise2 x -− 4 x2, 0 < x <
L

2
, 0,

L

2
< x < L;

Plotf[x], x,
-−L

2
,
3 L

2
, AspectRatio → Automatic, PlotRange → Full

-−0.5 0.5 1.0 1.5

0.05
0.10
0.15
0.20
0.25

Compute the Fourier coefficients. Since the initial velocity g(x)=0,  Bn = 0 and
A[n_] = (2 /∕ L) Integrate[f[x] Sin[n Pi x /∕ L], {x, 0, L}]

-−
4 -−4 + 4 Cos n π

2
 + n π Sin n π

2


n3 π3

with eigenvalues

Lambda[n_] =
c n Pi

L
^2

n2 π2

The n-th partial sum of the Fourier series solution of the wave equation is
u[x_, t_, N_] := Sum[A[n] Cos[Sqrt[Lambda[n]] t] Sin[n Pi x /∕ L], {n, 1, N}]

Give the partial sum approximation in a general form.
u[x, t, 6]

-−
4 (-−4 + π) Cos[π t] Sin[π x]

π3
+

4 Cos[2 π t] Sin[2 π x]

π3
-−
4 (-−4 -− 3 π) Cos[3 π t] Sin[3 π x]

27 π3
-−

4 (-−4 + 5 π) Cos[5 π t] Sin[5 π x]

125 π3
+
4 Cos[6 π t] Sin[6 π x]

27 π3

The green cell above matches the answer in the text.
Plot[u[x, 0, 20], {x, 0, L}, AspectRatio → Automatic]
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15 - 20 Separation of a Fourth-Order PDE. Vibrating Beam
By the principles used in modeling the string it can be shown that small free vertical 
vibrations of a uniform elastic beam (Fig. 292) are modeled by the fourth-order PDE
(21)    ∂2u∂2t

= -−c2 ∂4u
∂4x

where c2 = EIρA  (E=Young’s modulus of elasticity, I=moment of inertia of the cross 
section with repsect to the y-axis in the figure, ρ=density, A=cross-sectional area).
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15 - 20 Separation of a Fourth-Order PDE. Vibrating Beam
By the principles used in modeling the string it can be shown that small free vertical 
vibrations of a uniform elastic beam (Fig. 292) are modeled by the fourth-order PDE
(21)    ∂2u∂2t

= -−c2 ∂4u
∂4x

where c2 = EIρA  (E=Young’s modulus of elasticity, I=moment of inertia of the cross 
section with repsect to the y-axis in the figure, ρ=density, A=cross-sectional area).

Judging by the performance in the last section, I’m not even going to try to get Mathemat-
ica to solve equations of

15. Substituting u=F(x)G(t) into (21), show that F(4)F = -− G
¨

c2 G = const.
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